THE 1999 CMU 10X REAL TIME
BROADCAST NEWS TRANSCRIPTION SYSTEM

Mosur RavishankaRita Singh, Bhiksha Raj, and Résd M. Stern

Department of Electrical and Computer Engineering and School of Computer Science
Carngjie Mellon Unversity
Pittshurgh, Pennsylania 15213

ABSTRACT was trained &eping the requirements of the decoder in mind.
. . . The acoustic models were trained taodghe lavest number of
CMU's 10X real time system is the HMM-bas8aHINX-III parameters that could be used without sigaift loss in accu-
system with a nely developed &st decoderThe fast decoder ragy. The leicon was modifed to use a lser number of phones.
gses a sutector clustered ersion of the acoustic models for.l.he language model (LM) s also trained with a refagly
aussian computation and xit&l tree search structure. lag small \ocahilary to reduce the search space
developed in Septemherl999, and is currently ardi-pass y pace.
decoder capable of generatingord lattices. It vas designed to This paper is dided into tw sections. In Section 2 we describe
optimize speed and recognition accyraxs well as memory the 10X system used for theaduation including our results and
requirements. & the 1999 Hub 4waluation task, the system obsenations. In Section 3 we describe the CMU 10X decoder in
used tvo sets of acoustic models - full-bandwidth and natro detail.
bandwidth.The acoustic models were 6000 senone, 32 Gaussians

per state, 3-state HMMs with no skips permitted across states. 2. System Description of the
The system used a single 39 dimensional feature stream consist- CMU 10X Hub 4 1999 system

ing of cepstra and cepstral fedifences.The lattices generated

were rescored using aAG algorithm. The DAG-rescored | this section we describe tharious components of the CMU
hypotheses were designated as those of the primary syEtem. 109x proadcast mves transcription system in detail. Spegatly,

contrasve system consisted of the output of thstfpasd/iterbi \ye |0k at the follwing components of the broadcastwseran-
search, with no BG rescoring of latticesA trigram language scription system:

model consisting of 57,000 unigrams, 10 million bigrams and

14.9 million trigrams \as used. No adaptation passes were done.* Signal processing, in which appropriate featugetorsare

In this paper we describe tharious components of the primary extractedfrom thespeech vaveforms

systemThe frst-pass wrd error rate on the 1998 Hub viakia- . .

tion set vas 20.4% with this systerfihe overall word error rate  * Segmentationin which he broadcast mes shovs are sg-

scored by NIST for the 1999 Hub daduation set s 27.6%. men(;_ed |n:jo (rjnanageatﬂegments and non-speeclyiens
are discarde

1. Intr oduction » Acoustic models, which are traineddping the task and

The 10X spok of the 199%Hub 4 Broadcast Ness ealuation decoding requirements in mind
was aimed at the delopment of automatic speech recognition
(ASR) systems that canvgi the best recognition performance at
belov 10 times real time on speéitl state-of-the-art computers.
The task consisted of recognizing a total of 3.08 hours of speethe following subsections describe each of these components.
in less than 30 hours of decoding tifibe system w&s run on a

450-MHz Pentium-IIl processor machine with 256-MB RAM. 21 Signal PDcessing

In HMM-basedASR systems higher recognition accuracies gen-

erally result from detailed models with agamumber of param- Cepstral features were computed from the speeviforms by
eters, and by a detailed search of all possippmtheses during & standard algorithm using a log-linear freqyewarping func-
recognition. Since computation time increases with the numb#en. 13 Mel frequeng cepstra were computed for each wiwdo
of parameters in the acoustic models, and also with the numi§ér25 ms,with adjacent windws overlapped by 1%ns, resulting
of hypotheses considered during recognition, the requirement igf about 55J000 \ectors forShow 1 and 55000 \ectors for
high recognition accurgcis usually at cross purposes with theShow 2. Broadband and namdand analyses wereoth per
requirement of high recognition spedthe compromise in accu- formed, resultingin two sets of cepstra for each sha0 Mel fi-
ragy involved in achieing higher speeds is Wer if a lage ters coering the frequencrange 15z to 6400 Hz were used
amount of system memory isvalable to store intermediate for broadband parametrizationonarravband parametrization
results during recognition, which can be used to aehiegher 31 Mel fiters carering 200Hz to 3400Hz were used. Signal pro-
accuracies. Hwever, this places an additionaluttlen on the cessing took about 0.03 times real time.

computer since the memory used for recognition v& noavail-

able to other processes running concurrently 2.2, Segmentation

The CMU 10X decoder as deeloped in September 1999. It has
been designed to steka good compromise between recognitio
accurag, speed, and memory requirements, t@dhe best pos-
sible typothesis in a single pasghe CMU 1999Hub 4 ystem

« Language models, which are also trainedping the task
and decoding requirements in mind

Sgymentation was done in four stages. First, the cepsteators
for the entire sho were classitid using a speech/non-speech
classifer. All contiguous sgments of 3 seconds or longer that



were marlked as non-speech atiththad speech/non-speechelik
lihood ratio belav a preset thresholdere discardedhe distritu-

tions for the tvw classes were trained using speech and non

speech ggments selected from the 1997 BN training data release
by LDC.

Next, the cepstral ectors were class#fd using a broadband/par
rowband classiér, whose class distrittions were trained using
broadband and namupand sgments from the 1997 LDC Broad-
cast Nevs training dataThe likelihood ratio vas smoothed by
median fitering with a 3-second windg and all sgments whose
smoothed liklihood ratio lay bel a threshold were maekl as
narravband speechlhe transition points from broadband to-nar
rowband speecland vice-ersawere markd as sgmentation
points.

The cepstral ectors were then clasgfl using a male/female
classifer. All points where the diérence in the log-liglihoods of
the classes changed by more than a threshold weredasksg-
mentation points.

Even after the ah@ three steps, geral extremely long sgmens
remainedThese were further gmented usinghe CMUse algo-

state.The lattice generation step took about 7.6 times real time.
The lattices were collapsed intodaected agclic graph(DAG)

gland a best-path search jvas performed using a higher language
weight for the final hypothesisThis step took about 0.2 times real

time.

2.4. Lexicon and GrammarTraining

In order to reduce the total number of parameters, the dictionary
was manually redone to use only 44 phones (instead of the usual
50 used by the CMU ¥écon). Pronunciations for the more fre-
quently-occurring wrds were chosen from a pre-selected set of
pronunciations to maximize the élkhood of their instances in the
training data.The reduced phoneset and the redone dictionary
resulted in a reduced, and much more compact, set of triphones
needed to model all possible combinations of phones that could
be generated by the dictionabynguistic questions used for deci-
sion-tree generation were automatically learned from the data
[11]. The fnal recognition Iricon consisted of 45,700 ords,
selected on the basis of their occurrence frequémahe LM
training dataAdditional emphasis as gven to wrds that were

rithm [9]. All classifiers used a mixture of 32 Gaussians to model expected to occur in the ws epoch mentioned in the NIST spec-

the distrilution of a classThe sgmentation process took about
0.1 times real time.

2.3.Acoustic Training and Overall Decoding
Procedure

Acoustic models wereuilt using a subset of t200 hours of BN
training data distribted by the LDC during 997 and 098 In
order to reduce the total training time feiEnt amounts of train-
ing data were used at f#ifent stages in the trainingoi~the
broadband models, decision trees for state tying weateusing

ifications. Some wrds occurring in nes programs in that epoch
that did not occur in the trainingxteat all were also added to the
lexicon. These were modelled as unseen unigrams by the LM.
However, a cursory audio analysis of theafiation data after the
evaluation reealed that there were approximately 400M30Gn

the fnal recognition Iricon.We note that the 47,5000nds in the
dictionary were a subset of the 57000rds coered by the LM.
Hence, the ééctive wocahlulary of the LM vas therefore only
47,500 vords.

A standard, trigram baokf LM was hilt using the CMU-Cam-
bridge statistical language modelling toolkif].[ The LM was

only 25 hours of training data from the FO and F1 conditions oftrained using approximately 169 millionovds of tet obtained

the 1997training dataThis is not a recommended procedure in

standard training because the structure of the decision tree
changes with changing noise conditions, and parameters distrib-

uted using datérom one recording domain may not be optimal
for datafrom aher recording domaind.{]. This was donén our
case because offer time constraints at CMOhe decision trees
were pruned to ge 6000 tied states in aModels with one @us-
sianper gatewere also trained using only 25 hours of datad
approximately 20 hours of data were added farhesubsequent
splitting of the Gaussians per stat€he fnal 32Gaussiarper-
state models were trained using 125 hours of training data.

from the follaving sources:
1. Spolen Document Retnial text, Jan-Feb 98

2.BN LM *“test” data from LDC BN CD-RMs, 1992-1996
3.BN LM *“train” data from LDC BN CD-FROMs, 1992-1996

4. BN acoustic training data transcriptions, July 1997 to Jan
1998

Frequent wrd sequences such asuwseprogram namesuch as
“A. B. C’ and names of nesreaders for these shis, and other

The narravband models were trained using the same decisionexpected common names such as “Bill Clinton” were com-
trees used by the broadband models. 62 hours of speech from tHf@unded into single @rds. Signiftant reconditioning of the xe

1998 training data wre fitered devn to telephone bandwidth,
and narrevband analysis (31 Mellfers cavering 100Hz to 3400
Hz) was performed to compute nasrdand cepstrahe entire 62
hours were used at each stage of trainifige fnal narrevband

was also performed to eliminate spelling misgkinappropriate
separation of wrd prefkes, etc.The fnal trigram LM had a
vocalulary of 57000 words, andncluded D million bigrams and
14.9 million trigrams.

models had 6000 tied states, each modelled by a mixture of 32

Gaussians.

After sggmentation of the test data, alhseents mar&d as broad-
band weredecoded using therdadband modelsSements
marked as narmwband were simharly decoded using nastand
models. Lattices were generated using a trigram Tié. acoustic
models used in both cases were triphbased HMMs, with
cross-vord and within-verd triphones separately modelléthe
HMMs had a 3state topology with transitions permitted only

between adjacent states. Both models had 6000 tied states, with a

mixture of 2 Gaussians modelling the distution in each tied

2.5.Word Error Rates on theEvaluation Sd&

The frst pass decodes of theatuation set were designated as
CMU's secondary 10X system, and thgpdtheses generated
from DAG-rescoring of the lattices generated in th&t flass were
designated as CMU's primary systefable 1 shas the vord
error rates (%) and@lable 2 shws the timing information related
to the two systems for all the Hub fécus conditionsFollowing
the usual corention, tlese are coded as fols:

« FO:Prepared tpadcast speech



« F1: Spontaneous broadcast speech In the following sections we brigfl describe the&eomputation of

acoustic likelihoods, andthe search componeiwof the decoder
* F2:Speech oer telephone channels

« F3:Speech in the presence of background music 3.2.Computation of Acoustic Model Scoe
* F4:Speech under dgaded acoustic conditions The acoustic models used for the CMU Hub989 system con-
] ) sisted of 600@enone®r shared states, each modelled Beaas-
* F5:Speech from non-nate speakrs sian mixture with 32 component densities, and each density

consisting of a 39-dimensional meaactor and corresponding
diagonal covariance ector During decoding, onvarage ®er
half the senones are considered for each incoming feataterv

For a set of 6000 senones with 32 Gaussians per senone, this
FO Fl F2 F3 F4 FS | FX would require the valuation of 3000x32 Gaussian densities for
every feature ®gctor in the utterance. @&ral Gaussian selection
algorithms hae been suggested in the literature to reduce this

« FX: All other speecland mixtures of conditions

Pass 1| 146 | 24.7 | 304 | 26.2 | 26.0 | 32.0 | 59.1

DAG 144 | 2371 209 | 260 | 264 | 305 | 57.4 computational requiremefie.g. [3]). Most of them rely on using
) ) ) i ) ’ ) one or more layers of coarser acoustic models to obttinraist
Table 1. Word error rates for bothvaluation sets for all Hub 4 of densities in each mixture, in each frafiee remaining densi-
- 0 ties are notvaluated.
focus conditionsThe wverall WER was 26.7% afterdss 1
and 26.3% after BG rescoring. A similar approach as used in the CMU 10X decoder as well.

subvector gantizedversion B] of the acoustic model as created

and used to select the moselik Gaussians in each mixtuiighe
Component Time (seconds) Memory selected Gaussians were then vahkgated using the original
Shov 1 Show 2 Used detailed acoustic model parameters. In the ¥alig subsections
we describe the Gaussian selection procedure, areydhetion
Signal Processing 192 192 <5MB of its performance
Segmentation 544 545 <5MB 3.2.1. Gaussian Selection
Lattice Generation 41494 42949 190 MB The general principle ofuilding a subvector quantized acoustic
model has been described 8}.[The mean andariance ectors
DAG Rescoring 988 1048 190 MB representing each Gaussian in the model were combined@nd se
mented into three subctors, the fst representing the means and
Total CPU Time 43218 44734 <190 MB variances of all the cepstral components in #etot the second
representing the means aratiances of the delta-cepstral compo-
Table 2.Timing and memory usage information for all nents, and the third representing the corresponding components

for the double-delta featureBhe 6000x32 densities of the origi-
nal model thus resulted in three sets ofvsabors, each with
192000 elements, which were then clustered into 4096 clusters

components of the CMU 10X system.

The computational resources used consisted of &3 Pen- ging the K-means algorithm and quantizBuis resulted in three
tium 1l processor with 2561B RAM and 512MB SWAP. codebooks, each with 4096 entries.
3. DecoderAr chitecture In ary given frame, all the component densities iiGaussian

mixture were frst evaluated using the quantize@rsions of the
. means andariances. Since there are only 4096x3 eaitds in
3.1. Outline all, this required the computation of only 4096x3 GaussiBines.

. . ) . . best scoring candidates were then selected, based@eraion
CMU’s 10X decoder ®s designed to ge the highest speed with  peamwidth Selection s done relate to the best-scoring com-
minimum loss in accurgein conjunction with a minimum mem- ponent within each mixture, independently of other mixtuFas.
ory requirement. It is a singjgass decoder capable of generating components thus selected were thenvademted using the origi-
word lattices in.its f:st pass, WhiC.h can be rescored using adaptedng| acoustic model, producing a score for the corresponding
models. Decoding is perfoed sing a full set of acoustic mod-  genone in that fram@he aerage number of Gaussians selected

els and it 5 currently designed toosk with a full _trigram Ia_n- from each mixture s approximately 2.5 to 3, depending on the
guage model. Heever, larger LMs can be used with only minor  gglection beamwidth.

modification of the code.

Several innvations were introduced in the standard decoding 3.2.2. Rrformance Evaluation
stratgy in order to speed up the decoding. Both, acousedi-ik

hood computation and search were medifio reduce computa- The Gaussian selection algorithnasvealuated on the basis of

tion time. It is important to note at the outset that in this de;:odertWO metrlcs.: . .
the reductia in decoding speedas achieed entirely at an algo- 1. Selection accuacy, or the accurag with which the proce-
rithmic level through implementational née-tuning. Almost no dure selects the best Gaussian in each mixtinie.is impor

hand-coding s done in the decoder to speed up the decoding tantbecausehte acoustic liglihood for ay mixture is
process. dominated by the most iy Gaussian in that mixture.



2. Therecgnition accuacy obtained when the procedure is
used for acoustic l&ihood computation.

The DARPA Hub 4 1997 @aluation datavere wsed for this ealu-

ation. Sgments tagged as F2 (telephone channel speech) wer

excluded from the sefThe acoustic models used for thisakia-

tion had 6000 senones, with 20 component densities in the mixt

ture representing each senorikable 3 shws the selection
accurag as a function of the selection beamwidttithin each

FO | F1 | F3 | F4 | F5 | FX
Base 172 | 26.2 | 36.1 | 314 | 35.1 | 63.3
Test 17.7 | 26.3 | 37.6 | 328 | 35.1 | 65.2

Table 4. Performancewaluation of the Gaussian selection
algorithm on the BRPA Hub 41997 evaluation data set

mixture, the selection beamwidth determines the Gaussian density
with the worst score (in terms of the quantized parameters) that

can be considered to be aetirelatve to the best scoring density
in that mixture.Thus, when the selection beamwidtlasvl1.0,
only the single best component in each mixtues whosenln
that casethe shatlist size in this case auld be only 5%i(e. only
one out of the 20 densities in each mixtumald be selected).

Shortlist Beam Shor(t(l)i/os)t Size /f:éif;g;
1.0 5.0 52
0.1 82 o
0.01 128 -
0.001 18.4 88
0.0001 24.9 92
0.00001 31.8 o5
0.00001 38.3 97

Table 3.Gaussian selection accuyaas a function of selection
beamwidth.

‘ ninety ninety ‘

‘ nineteen ‘

| 5 |
Figure 1.Example olViterbi pruning.

ninety ‘

et al.[5] usealextree copy stratgy to incorporate LM scores into
the tree. Deenportet al. use an incremental approadj.[The
CMU SPHINX-II system ] uses a single igree cop, with post-
tree LM incorporation.

Ortmanné gpproach requires careful handling toy@et the cop-

ies from werwhelming the main memoryailable. Een so, its
main memory size requirements amrylage and there is con-
siderable werhead for dynamic allocation ofxteee nodesThe
stratgy used by Deenportet. al.requires the lilding of a much
larger LM in order to handle the incremental score computation.
The SPHINX-II approach, while compact andfiefent, sufers
from poor word sgmentations and henakgraded ecognition
accuray. The stratgy used by Deenportet. al.is likely to hae

this dravback as well.

manage to select the correct (moseljkGaussian) in each state

69% of the timeWhile we do miss the correct Gaussian in 31%
of the senones, thefe€t on the recognition may not be as pro-
nounced.This is because, if the Ekihoods of these senones are
low compared to the most &ky ones, the senones may not occur
in the best path globally

Table 4 shws the vord error rate$or the same Huld 1997 eal-

CMU SPHINX-II systemis the relatiely small number of kdree
root nodesViterbi pruning at these root nodesves fav word
segmentationsi(e. sart times) intact, relate to the lgtree coy
schemeWhen there is no LM score component beforeviterbi
pruning decision, the result can often be unpredictable.

Figure 1 shars an @ample of tvo possible recognitions (andgse
mentations) where the spak input vasnineteen ninetyDuring

uation set, with and without the proposed Gaussian selection alggrecognition, at timed, the decoder ypothesizes the end of the

rithm. The selection beamwidth for this tablesvset to be 0.1.
Theshortlist &ze was therefore less than%®f the mixture size,
on average The overall error rate without Gaussian selectieas
26.8% and the system ran at 53 times real tiWigh Gaussian
selection the error rate increased to 27.5ut, the eecution
speed dropped to 11 times real time. In otherds, he Gaussian
selection algorithm speeds up the acoustiililood computation
by approximately adctor of 5, while resulting in only about a
2.5% relatve increase in ord error rate

3.3. Seach Algorithm

The CMU 10X decoder uses arant of the single iécal-tree
(lextree) search algorithm for searching the spaceypbtimeses.
A variety of letree schemes kia been proposed and imple-
mented in the literatur&hey differ mainly in the vay in which

LM scores are incorporated into the search algorithm. Ortmann

word ninety and transitions to theaxd ninety Then, at timeB,
the decoderypothesizesineteenand agin transitions tminety
If LM scores were somekoincorporated during such transitions,

assuming thatP(ninety|nineteer) is much greater than

P(ninety|ninety) the latter vould most lilely supersede the ini-
tial hypothesisand obtain the correct recognition. Wever, with-
out the benefiof the LM, the outcome is more uncertain. (Note
that the LM score for aevd is only incorporated when teadof
the word is reached.Our solution to this problem isnigram lex-
tree eplication which is described belo

3.3.1. Unigam Leical Tree Replication

The main problem with the situation depicted in Figure 1 is that
the transition frormineteento ninetyat timeB may notsucceed,

Sespecially gien the absence of a guiding LM. It is desirable to



have both the transitions AtandB survive, so that when the sec- considered to be beneifl.

ond word ninetyis recognized, both predecessors can be consid-

ered for the LM probability. This was accomplished in the 3.3.4. Pruning

decoder by replicating the singleieee staticallyand staggering . ) .

the cross-wrd transitions to the Xérees across time, also stati- "¢ CMU 10X decoder uses absolute pruniid 9] in addition
cally. For example, in our actualvaluation confjuration, three 0 beam pruningo reduce the search siZéree separate pruning
lextree copies were used, switching crossetransitions to the ~ Parameters are dagd:

next copy in a round-robindshion gery three frames « Maximum actve HMMs in each frame

This scheme alles mary different sgmentations for aypothe-
sized vord to surwe, at least one from eachxieee. This par
tially overcomes the div in the SPHINX-II single lextree + Maximum histories recorded in backpointer table in each
strat@y. At the same time, the static nature of the replication frame.

places a reasonable bound on the memory requirements of the

algorithm, without the werhead of dynamic Jree memory allo-  These parameters sigeiintly imprave the vorst-case belvior

¢ Maximum distinct vords «&iting in each frame

cation. of the decodeiin terms of recognition speed.

3.3.2. Languge Modelling 3.3.5. Rrformance Evaluation

As mentioned earliethe LM score for a wrd is incorporated ~ The performance of the decodeasmested on theARPA Hub 4
only when the end of theaxd is reached (postxtree LM inte- 1998 evaluation setThe acoustic models used for this test had
gration) 5000 tied states with 32 Gaussians per stateigram LM with

) . ) ) 4.7M bigrams and 15.5M trigrams waring a wcahlulary of
Consider a transition occurring at t"m? to a ltree root node. 64,000 words was used.The baseline performanceaw estab-

There could hee been seeral word endings at, , one of which lished gsing the CMQ'SPHINX-III decoder which performs full
. . acoustic modehaluation and a full searciihe tests were run on
would propagte to the letree root nodes, in accordance Wity a 456MHz Pentium-Ill processor Linux machine with 2568

erbi pruning. No LM score is associated with this transition, sincep5in memory
lextree root nodes do not represent witlial words This transi-
tion would eventually lead to the end of somend W (i.e. a lex- Table 5 shwss the speed and accuygmerformance of the system

tree leaf node) at some tintg. At this time all possilg LM on the chosen test set.
histories forW are etracted from thebadpointer that records

LM histories att, . The LM score folW with respect to each of Config- WER WER Search Total
these histories is computed and incorporated into tteseore. uration % incr Time Time
The scores of the resulting paths and the histories withW as .

the last vord, are then included in the backpointer table at time| Baseline 21.5 0.0 42.7 49.3

t,. Note that the single avd W ending att, could generate se

eral entries in the backpointer table, one for each unique LM his
tory. Since there is no restriction on the form of the LM histary 2 Lextree 22.4 4.2 2.0 7.3
full trigram LM Viterbi search could mo be performed.

1 Lextree 23.2 7.9 1.4 6.6

3 Lextree 22.1 2.8 2.6 7.9

In addition, we note that thexteee implementation does incorpo-
rate static unigram LM probabilities to pide some pruning and  4pe 5.Evaluation of the CMU 10X decoder on thARPA Hub
LM guidance during/iterbi searchThe LM score at each node is 4 1998 galuation set

the maximum of the unigram scores of abrds that could be '
reached from that nod@/hen a leaf node isxged, the unigram ) . .
score component for that leaf is rered from the total path  1he lextree based search is obsavto result in lage improe-
score, before incorporating the true LM scores (taking the histo-Ments in decoder speethe decoding time is modominated by

ries into account). the acoustic liklihood @aluation, and the search component
takes less than a third of the total computation tiAiso, lextree
3.3.3. Cpss-Vérd Triphone Modelling replication helps impnee recognition accurgcWith 3 copies, the

word-errorrate (WER) performance is only ngamally worse
The CMU 10X decoder usesyanmetric cross-wrd triphone than that of the baseline system. Finathe decoder runs on a
modek. The lextree root nodes are modelled using full crossdv ~ 256-MB machine, which isdirly small by current standards. In
triphones. Each root node is thereforgetof all possible models  fact, the actual memory usage of the decoder is abou¥1BXn

derived from considering all possible left coxttgghone At run this task.

time, a transition to the root node enters the correct model based

on the incoming left-cont phone This is important since evd- 4. Discussion

beginnings are articulated most clearly and full crossesmod-

elling is desirable for thesegiens of speech. We have described the architecture of thevi@MU SPHINX-III

. fast decoder and thenious components of the recognition sys-
At the letree leaf nodes, laever, composittHMM models are tem designed for the 1999ARPA Hub 4 ealuation task. In the

used, much lig that in the BBNdst-match systen2]. Since \ery decoderthe speed-up in decoding time has been aefealmost

few words surwe beam pruning until thenfal phone, the sim- : S o ) )
plicity of using single(albeit compositejnodelsat leaf nodes is entirely at an algorithmic Veel. No processespecift hand-craft



ing or code-tuning ws done for this purpos&he CMU fst
decoder optimizes for memoas well asfor speed and recogni-
tion. It uses less than 190 MB of RAM during decodifbe

search speedag obserad to increase with better trained acoustic
models with a greater number of parameters (limited, of course

[4] J. Odell, The Use of Conte in Large Vocalulary Speel
Recanition, PhD. Thesis, Uniersity of Cambridge, March
1995

[5] S. OrtmannsA. Eiden, and H. Ng “Improved Lexical Tree

by the standard bounds imposed by the amount of training data ~ Search for Lage Vocahilary Speech Recognitidnproc.
used) The senone computation timeasvobsered to increase

approximately Iinearly.with an increasing number of model [6] M. Ravishankay Efficient Algorithms for Spedt Recgni-
parametersiVe do not gie quantitatie results for these obsarv

tions in this papetbut they were used to optimize the size of the

acoustic models.
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